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1 Pseudorandomness

1.1 Pseudorandom distributions and generators

Suppose we have some function f, which we can think of as a randomized algorithm. We
give f n uniformly random bits, and it takes in an input x. Now we want to consider
another situation in which we give f n bits which are not uniformly random but may have
some dependence. We want these bits to be pseudorandom in the sense that the output
of f on input z should be similar to if we were using uniformly random bits.

Definition 1.1. A distribution D on {£1}" is e-pseudorandom against a class C of tests
(or e-fools C) if for any f € C,

|Ey~v, [f(Y)] = Ex~p[f(X)]| <e.

The uniform distribution is pseudorandom by this definition, but we really care about
pseudorandom distributions which depend on some small random seed of s bits.

Definition 1.2. A pseudorandom generator against C with error € and seed-length s
is an explicit (deterministic) function F': {£1}* — {£1}" such that for all f € C,

|Ey v, [f(Y)] = Ex~v, [f(X)]] < e

In other words, we want G(Us) to be e-pseudorandom against C.
Today we will care about two classes of functions:

e k-juntas: These correspond to k-wise independent distributions.

e Parity tests: These correspond to e-biased distributions.



1.2 Small-biased and (k,J)-wise independent distribtions
Here is a definition due to Naor and Naor.

Definition 1.3. A distribution D over {+1}" is called e-biased if for all nonempty sets
S C[n],
| Ex~pxs(X)]] <e.
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Equivalently,

Definition 1.4. A distribution D is (k,d)-independent if for all k-juntas f : {£1}" —

{:l:l}’
| Ey~v, [f(Y)] = Ex~p[f(X)]] < 6.

Remark 1.1. (k,0) independence is sometimes called k-wise independence, which can be
sampled using O(klogn) seed-length. This is optimal, as it can be shown that k-wise
independence can’t be sampled with < kk’% bits.

Our goal today is to prove the following theorem.

Theorem 1.1 (Naor-Naor). There is an explicit G : {£1}* — {£1}" such that G(Us) is
a e-biased distribution and s = O(logn + log(1/¢)).

We will be following the proof of AGHP, rather than the original proof. The following
lemma will help us connect the ideas of small-biased and (k, §)-independent distributions.

Lemma 1.1. Suppose D is a e-biased distribution. Then

| Ex~olf (X)] = Ey~u, [f (V)] < eLi(f),

= > If(s)
SCin]

Proof of Lemma. Use the Fourier expansion for both expectations.

where

|Ex~plf(X)] = Eyev, [F)]] = | Y F(S)Ex~nlxs(X)] — Ey~v,[xs(Y)])
SCln]

=| > (9 Ex~plxs(X)]

@#SC[n]
S (9] [ Explxs(X)]|
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Corollary 1.1 (Vazirani’s XOR Lemma). Any e-biased distribution is also a (k,§)-wise
distribution with 6 = £2¥/2,

Before proving this corollary, let’s see what it, along with the Naor-Naor theorem, tells
us.

Corollary 1.2. There is an explicit G : {£1}* — {£1}" such that G(Us) is a (k,0)-wise
independent distribution and s = O(logn + log(1/¢)).

Proof of Corollary. Just apply the Naor-Naor theorem with ¢ = d/ 2k/2 and then apply
Vazirani’s XOR lemma. Then

s =O(logn + log(1/e)) = O(logn + log(1/9) + k/2). O
Remark 1.2. This can be improved to finding a (k, d)-wise independent distribution with
seed-length O(k + loglogn + log(1/6)).
Proof of Vazirani’s XOR Lemma. Let g : {£1}" — {£1} be any k-junta. So g(z) =
h(xiy, ..., xi,) for some iy < --- <4y and h: {£1}¥ — {£1}. Then

Lilg) = 3 [5(3)

SC[n]
= > [n(s)
S'Clk]
Using Cauchy-Schwarz,

< Z /}\L(SI)Z .ok

S'Clk]

=2k
=2k/2,

Now apply the previous lemma. O

1.3 Small-biased distributions and error-correcting codes

The intuition for our construction for the Naor-Naor theorem will be based on composing
the Reed-Solomon and Hadamard error-correcting codes.

Definition 1.5. A multiset A C {£1}" is called an e-biased set if the uniform distribution
over A, denoted Uy, is e-biased.

Think of this as a long matrix with m = |A| rows and n columns. We want the XOR
of every subset of columns to be (1/2 + ¢)-balanced. In Fy notation, we want any column



spanned by the columns of this matrix to have (1/2 + ¢)m 1s. This is saying that this is
an error-correcting code over F4" with dimension n and distance > m(1/2 — ¢).

Pick a random multiset A C {#1}" by picking m = O(n/e?) elements independently
and uniformly at random a(",a®,... a(™ € {£1}". Then A = {aV,...,a™} is an
e-biased set with high probability. This is because of the following claim:

Proposition 1.1. For all nonempty S C [n],

P 1 . (1)
a ... .a(m) m Z XS(a )
=1

Proof. This follows from the Chernoff bound, since the a( are independent. O

> 6) < 2e~me?/2

If we pick m = 2n/e2, then this probability is < 27™. This however, is non-constructive,
so we will use a constructive argument.

1.4 AGHP construction of a pseudorandom generator for small-biased
distributions

AGHP gave an explicit function G : {£1}* — {£1}" such that G(Us) is e-biased and
s = 2logy(n/e).

Proof of Naor-Naor theorem. Here is the construction: Take ¢ = [logy(n/e)]. We will
define G : {£1}? — {£1}". Identify the first £ bits with an element x € Fy and the
second ¢ bits with an element y € (F2)*. Let bin : Fye — (F3)* be 1 to 1 and linear over
Fy; that is,

bin(z + y) = bin(z) ® bin(y),  bin(0) = 0.

Sample X ~ Fy uniformly at random and Y ~ (F)¢ uniformly at random. Output
(Zo, ..., Zn—1), where

¢
Zi = <bin(Xi),Y>2, (a,b)o = Zajbj (mod 2).
j=1
Here is the analysis: Let a € {0,1}" be nonzero. Then it suffices to show that
Ez[(—1)%i% %] < e,

By [(-1)Z50 @4%] = Exy |(~1)ZE0 elbinX7):]
By the linearity of the inner product,

—Exy [(_1)@?;01 o bin(Xi),m}



By the linearity of bin,
=Exy |:(_1)<bin(2?;01 O”'Xi%yp}

P,(t) = Z:‘L;ol a;t' is a polynomial in one variable over Fy, so it has at most n — 1 roots.
—Ey |:EY [(_1)<bin(Pa(X))7Y>zH

For a fixed z, if Py(x) = 0, then By [(—1)F@):Y)2] = 1. Otherwise, By [(—1)Fa@):Y)2] = 0,

=Px(Pa(X) =0)
n—1
<e. OJ
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