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1 Pseudorandomness

1.1 Pseudorandom distributions and generators

Suppose we have some function f , which we can think of as a randomized algorithm. We
give f n uniformly random bits, and it takes in an input x. Now we want to consider
another situation in which we give f n bits which are not uniformly random but may have
some dependence. We want these bits to be pseudorandom in the sense that the output
of f on input x should be similar to if we were using uniformly random bits.

Definition 1.1. A distribution D on {±1}n is ε-pseudorandom against a class C of tests
(or ε-fools C) if for any f ∈ C,

|EY∼Un [f(Y )]− EX∼D[f(X)]| ≤ ε.

The uniform distribution is pseudorandom by this definition, but we really care about
pseudorandom distributions which depend on some small random seed of s bits.

Definition 1.2. A pseudorandom generator against C with error ε and seed-length s
is an explicit (deterministic) function F : {±1}s → {±1}n such that for all f ∈ C,

|EY∼Un [f(Y )]− EX∼Us [f(X)]| ≤ ε.

In other words, we want G(Us) to be ε-pseudorandom against C.
Today we will care about two classes of functions:

• k-juntas: These correspond to k-wise independent distributions.

• Parity tests: These correspond to ε-biased distributions.
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1.2 Small-biased and (k, δ)-wise independent distribtions

Here is a definition due to Naor and Naor.

Definition 1.3. A distribution D over {±1}n is called ε-biased if for all nonempty sets
S ⊆ [n],

|EX∼D[χS(X)]| ≤ ε.
Equivalently,

1− ε
2
≤ PX∼D

(∏
i∈S

Xi = 1

)
≤ 1 + ε

2
.

Definition 1.4. A distribution D is (k, δ)-independent if for all k-juntas f : {±1}n →
{±1},

|EY∼Un [f(Y )]− EX∼D[f(X)]| ≤ δ.

Remark 1.1. (k, 0) independence is sometimes called k-wise independence, which can be
sampled using O(k log n) seed-length. This is optimal, as it can be shown that k-wise
independence can’t be sampled with < k logn

2 bits.

Our goal today is to prove the following theorem.

Theorem 1.1 (Naor-Naor). There is an explicit G : {±1}s → {±1}n such that G(Us) is
a ε-biased distribution and s = O(log n+ log(1/ε)).

We will be following the proof of AGHP, rather than the original proof. The following
lemma will help us connect the ideas of small-biased and (k, δ)-independent distributions.

Lemma 1.1. Suppose D is a ε-biased distribution. Then

|EX∼D[f(X)]− EY∼Un [f(Y )]| ≤ εL1(f),

where
L1(f) =

∑
S⊆[n]

|f̂(S)|.

Proof of Lemma. Use the Fourier expansion for both expectations.

|EX∼D[f(X)]− EY∼Un [f(Y )]| =

∣∣∣∣∣∣
∑
S⊆[n]

f̂(S)(EX∼D[χS(X)]− EY∼Un [χS(Y )])

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

∅6=S⊆[n]

f̂(S)EX∼D[χS(X)]

∣∣∣∣∣∣
≤

∑
∅6=S⊆[n]

|f̂(S)| · |EX∼D[χS(X)]|

≤ ε.
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Corollary 1.1 (Vazirani’s XOR Lemma). Any ε-biased distribution is also a (k, δ)-wise
distribution with δ = ε2k/2.

Before proving this corollary, let’s see what it, along with the Naor-Naor theorem, tells
us.

Corollary 1.2. There is an explicit G : {±1}s → {±1}n such that G(Us) is a (k, δ)-wise
independent distribution and s = O(log n+ log(1/ε)).

Proof of Corollary. Just apply the Naor-Naor theorem with ε = δ/2k/2 and then apply
Vazirani’s XOR lemma. Then

s = O(log n+ log(1/ε)) = O(log n+ log(1/δ) + k/2).

Remark 1.2. This can be improved to finding a (k, δ)-wise independent distribution with
seed-length O(k + log log n+ log(1/δ)).

Proof of Vazirani’s XOR Lemma. Let g : {±1}n → {±1} be any k-junta. So g(x) =
h(xi1 , . . . , xik) for some i1 < · · · < ik and h : {±1}k → {±1}. Then

L1(g) =
∑
S⊆[n]

|ĝ(S)|

=
∑
S′⊆[k]

|ĥ(S)|

Using Cauchy-Schwarz,

≤
√ ∑
S′⊆[k]

ĥ(S′)2 · 2k

=
√

2k

= 2k/2.

Now apply the previous lemma.

1.3 Small-biased distributions and error-correcting codes

The intuition for our construction for the Naor-Naor theorem will be based on composing
the Reed-Solomon and Hadamard error-correcting codes.

Definition 1.5. A multiset A ⊆ {±1}n is called an ε-biased set if the uniform distribution
over A, denoted UA, is ε-biased.

Think of this as a long matrix with m = |A| rows and n columns. We want the XOR
of every subset of columns to be (1/2± ε)-balanced. In F2 notation, we want any column
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spanned by the columns of this matrix to have (1/2 ± ε)m 1s. This is saying that this is
an error-correcting code over Fm2 with dimension n and distance ≥ m(1/2− ε).

Pick a random multiset A ⊆ {±1}n by picking m = O(n/ε2) elements independently
and uniformly at random a(1), a(2), . . . , a(m) ∈ {±1}n. Then A = {a(1), . . . , a(m)} is an
ε-biased set with high probability. This is because of the following claim:

Proposition 1.1. For all nonempty S ⊆ [n],

Pa(1),...,a(m)

(∣∣∣∣∣ 1

m

m∑
i=1

χS(a(i))

∣∣∣∣∣ > ε

)
≤ 2e−mε

2/2.

Proof. This follows from the Chernoff bound, since the a(i) are independent.

If we pick m = 2n/ε2, then this probability is� 2−n. This however, is non-constructive,
so we will use a constructive argument.

1.4 AGHP construction of a pseudorandom generator for small-biased
distributions

AGHP gave an explicit function G : {±1}s → {±1}n such that G(Us) is ε-biased and
s = 2 log2(n/ε).

Proof of Naor-Naor theorem. Here is the construction: Take ` = dlog2(n/ε)e. We will
define G : {±1}2` → {±1}n. Identify the first ` bits with an element x ∈ F2` and the
second ` bits with an element y ∈ (F2)

`. Let bin : F2` → (F2)
` be 1 to 1 and linear over

F2; that is,
bin(x+ y) = bin(x)⊕ bin(y), bin(0) = 0`.

Sample X ∼ F2` uniformly at random and Y ∼ (F2)
` uniformly at random. Output

(Z0, . . . , Zn−1), where

Zi = 〈bin(Xi), Y 〉2, 〈a, b〉2 =
∑̀
j=1

ajbj (mod 2).

Here is the analysis: Let α ∈ {0, 1}n be nonzero. Then it suffices to show that

EZ [(−1)
∑n−1
i=0 αiZi ] ≤ ε.

EZ
[
(−1)

∑n−1
i=0 αiZi

]
= EX,Y

[
(−1)

∑n−1
i=0 αi〈bin(X

i),Y 〉2
]

By the linearity of the inner product,

= EX,Y
[
(−1)〈

∑n−1
i=0 αi bin(X

i),Y 〉2
]

4



By the linearity of bin,

= EX,Y
[
(−1)〈bin(

∑n−1
i=0 αiX

i),Y 〉2
]

Pα(t) =
∑n−1

i=0 αit
i is a polynomial in one variable over F2` , so it has at most n− 1 roots.

= EX
[
EY
[
(−1)〈bin(Pα(X)),Y 〉2

]]
For a fixed x, if Pα(x) = 0, then EY [(−1)〈Pα(x),Y 〉2 ] = 1. Otherwise, EY [(−1)〈Pα(x),Y 〉2 ] = 0.

= PX(Pα(X) = 0)

≤ n− 1

2`

≤ ε.
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